Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gen Virol ; 103(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36282569

RESUMO

Bracoviruses and ichnoviruses are endogenous viruses of parasitic wasps that produce particles containing virulence genes expressed in host tissues and necessary for parasitism success. In the case of bracoviruses the particles are produced by conserved genes of nudiviral origin integrated permanently in the wasp genome, whereas the virulence genes can strikingly differ depending on the wasp lineage. To date most data obtained on bracoviruses concerned species from the braconid subfamily of Microgastrinae. To gain a broader view on the diversity of virulence genes we sequenced the genome packaged in the particles of Chelonus inanitus bracovirus (CiBV) produced by a wasp belonging to a different subfamily: the Cheloninae. These are egg-larval parasitoids, which means that they oviposit into the host egg and the wasp larvae then develop within the larval stages of the host. We found that most of CiBV virulence genes belong to families that are specific to Cheloninae. As other bracoviruses and ichnoviruses however, CiBV encode v-ank genes encoding truncated versions of the immune cactus/IκB factor, which suggests these proteins might play a key role in host-parasite interactions involving domesticated endogenous viruses. We found that the structures of CiBV V-ANKs are different from those previously reported. Phylogenetic analysis supports the hypothesis that they may originate from a cactus/IκB immune gene from the wasp genome acquired by the bracovirus. However, their evolutionary history is different from that shared by other V-ANKs, whose common origin probably reflects horizontal gene transfer events of virus sequences between braconid and ichneumonid wasps.


Assuntos
Polydnaviridae , Vespas , Humanos , Animais , Polydnaviridae/genética , Filogenia , Vespas/genética , Proteínas Virais/genética , Evolução Biológica
2.
J Virol ; 96(13): e0052422, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35678601

RESUMO

Nudiviruses are large double-stranded DNA viruses related to baculoviruses known to be endogenized in the genomes of certain parasitic wasp species. These wasp-virus associations allow the production of viral particles or virus-like particles that ensure wasp parasitism success within lepidopteran hosts. Venturia canescens is an ichneumonid wasp belonging to the Campopleginae subfamily that has endogenized nudivirus genes belonging to the Alphanudivirus genus to produce "virus-like particles" (Venturia canescens virus-like particles [VcVLPs]), which package proteic virulence factors. The main aim of this study was to determine whether alphanudivirus gene functions have been conserved following endogenization. The expression dynamics of alphanudivirus genes was monitored by a high throughput transcriptional approach, and the functional role of lef-4 and lef-8 genes predicted to encode viral RNA polymerase components was investigated by RNA interference. As described for baculovirus infections and for endogenized nudivirus genes in braconid wasp species producing bracoviruses, a transcriptional cascade involving early and late expressed alphanudivirus genes could be observed. The expression of lef-4 and lef-8 was also shown to be required for the expression of alphanudivirus late genes allowing correct particle formation. Together with previous literature, the results show that endogenization of nudiviruses in parasitoid wasps has repeatedly led to the conservation of the viral RNA polymerase function, allowing the production of viruses or viral-like particles that differ in composition but enable wasp parasitic success. IMPORTANCE This study shows that endogenization of a nudivirus genome in a Campopleginae parasitoid wasp has led to the conservation, as for endogenized nudiviruses in braconid parasitoid wasps, of the viral RNA polymerase function, required for the transcription of genes encoding viral particles involved in wasp parasitism success. We also showed for the first time that RNA interference (RNAi) can be successfully used to downregulate gene expression in this species, a model in behavioral ecology. This opens the opportunity to investigate the function of genes involved in other traits important for parasitism success, such as reproductive strategies and host choice. Fundamental data acquired on gene function in Venturia canescens are likely to be transferable to other parasitoid wasp species used in biological control programs. This study also renders possible the investigation of other nudivirus gene functions, for which little data are available.


Assuntos
Nudiviridae , Transcrição Viral , Vespas , Animais , DNA Viral/genética , Nudiviridae/genética , Proteínas do Complexo da Replicase Viral , Vespas/virologia
3.
Curr Opin Insect Sci ; 50: 100876, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35065285

RESUMO

The piRNA system controls transposable element (TE) mobility by transcriptional gene silencing and post-transcriptional gene silencing. Dispersed in insect genomes, piRNA clusters contain TE copies, from which they produce piRNAs (specific small RNAs). These piRNAs can both target the nascent transcripts produced by active TE copies and directly repress them by heterochromatinization. They can also target mature transcripts and cleave them following amplification by the so-called 'ping-pong' loop mechanism. Moreover, piRNA clusters contain endogenous viral elements (EVEs), from which they produce piRNAs. The current idea is that these piRNAs could participate in the antiviral response against exogenous viral infection. In this review, we show that among insects, to date, this antiviral response by the piRNA system appears mainly restricted to mosquitoes, but this could be due to the focus of most studies on arboviruses.


Assuntos
Elementos de DNA Transponíveis , Inativação Gênica , Animais , Antivirais , Insetos/genética , RNA Interferente Pequeno/genética
4.
J Evol Biol ; 34(2): 256-269, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33108676

RESUMO

The protection conferred by a first infection upon a second pathogenic exposure (i.e. immune priming) is an emergent research topic in the field of invertebrate immunity. Immune priming has been demonstrated in various species, but little is known about the intrinsic factors that may influence this immune process. In this study, we tested whether age, gender and the symbiotic bacterium Wolbachia affect the protection resulting from immune priming in A. vulgare against S. enterica. We firstly primed young and old, symbiotic and asymbiotic males and females, either with a non-lethal low dose of S. enterica, LB broth or without injection (control). Seven days post-injection, we performed a LD50 injection of S. enterica in all individuals and we monitored their survival rates. We demonstrated that survival capacities depend on these three factors: young and old asymbiotic individuals (males and females) expressed immune priming (S. enterica-primed individuals survived better than LB-primed and non-primed), with a general decline in the strength of protection in old females, but not in old males, compared to young. When Wolbachia is present, the immune priming protection was observed in old, but not in young symbiotic individuals, even if the Wolbachia load on entire individuals is equivalent regardless to age. Our overall results showed that the immune priming protection in A. vulgare depends on individuals' states, highlighting the need to consider these factors both in mechanistical and evolutionary studies focusing on invertebrate's immunity.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Isópodes/imunologia , Salmonella enterica/fisiologia , Wolbachia/fisiologia , Fatores Etários , Animais , Feminino , Masculino , Fatores Sexuais , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...